Freitag, 23. Dezember 2011

The Innovation and Design of Rotor Blades for the Future

European renewable energy targets continue to fuel the wind turbine industry, with the development of the offshore market pushing the demand for even larger turbines. Some of the designs currently in use have rotor diameters in excess of 120 metres, and the blades are required to perform efficiently under extremely turbulent conditions.
Rotor blades can account for 20-25% of the overall cost of a wind turbine, so it is essential that the blades are efficient and provide long service with little maintenance, to ensure their cost-effectiveness. Manufacturers are constantly developing the production process as new methods and technology are integrated. The move towards mass production to meet the demand of the growing offshore market, and the opportunity to manufacture close to site, offers the potential to reduce the cost of rotor blades significantly.

Rotor blade design concepts
Aerodynamics is crucial in rotor blade design; in the past blades have been designed on the basis of aviation airfoils, but these airfoils are intended for plane wings which are placed under entirely different wind flow conditions to turbine blades (1). Most blade manufacturers use their own customised design for turbine blade airfoils, and are continually developing the technology behind them.
The aerodynamic design of a blade dictates its width, thickness and twist. And the key challenge to manufacturers is to find a compromise between air flow and blade strength to optimise performance and efficiency. In pure terms of aerodynamics, the perfect blade design would see a blade which is thick, wide and very long. In reality, this is not viable as the blade would put far too much strain on the turbine, and could strike the tower upon rotation. The strongest type of blade would be one of a circular structure, but this is equally implausible as such a blade would have minimal lift, and would not be suitable for producing energy from wind power. These extreme examples indicate why it is so important to find the best balance between air flow and strength in blade manufacture to improve efficiency.
One of the world’s leading blade manufacturers, LM Wind Power, have sold over 130,000 blades equivalent to a capacity of 43 GW; and more than one in three wind turbines in the world is fitted with their blades (1). They use several innovative design concepts to improve performance, and are at the forefront of glass fibre development to produce lighter more efficient blades.
One unique feature in the design of LM blades is the pre-bending process, which means the blades flex towards the wind once they are mounted and are not subject to loading (2). Clearance of the tower is essential in blade design, and the tip to tower distance is critical.

Interested in reading more about rotor blade design concepts? Find out more here.


References:

Mittwoch, 14. Dezember 2011

Neue Programmpunkte auf der Unbundling 2012!

Auf der Unbundling 2012 gibt es einige Neuerungen im Programm, die es bisher so noch nicht gab!

Neu im Programm sind:

- e-IT
- IS-U & Co
- Treffpunkt KMU
- Erfolgscoaching

WAS IST e-IT?
e-IT ist unser Think Tank zum Thema Software und Systemtechnik in der Energiewirtschaft, die Geschäftsführer der wichtigsten Softwarehäuser diskutieren über die Zukunft der Branche – Mit einem Blick direkt aus der Praxis, kontrovers und offen und immer nah an der Projektarbeit mit den Kunden. Mehr zu diesem Thema finden Sie auch hier.

Was es mit den anderen Neuerungen auf sich hat, erfahren Sie in Kürze hier!

Donnerstag, 8. Dezember 2011

SAVE THE DATE: Unbundling 2012

Die Zeichen im Energiemarkt stehen auf Neuanfang – Energiewende, Netzausbau und EnWG setzen auf eine Remodellierung in der Prozesslandschaft – GPKE und GeLi werden neu gestaltet werden.
 Prozesse, Daten und Kommunikation werden Fachbereiche und IT beschäftigen.

Pünktlich nach dem Stichtag 1. April 2012 bietet IQPC die Veranstaltung, die Sie in Ihren Projekten voranbringt. Vom regulatorischen Überblick über die neuen Rahmenbedingungen bis zu den Details der Datenformate und IT-Systeme bekommen Sie einen umfangreichen Überblick.

Regulierung trifft auf Praxis – Die bewährte Mischung aus IT, Netz, Kundenservice und Abrechnung, sowie Anwendern und Anbietern, führt zu einem Austausch, den es nur bei dieser Veranstaltung gibt. Nutzen Sie das Forum, um auch in der nächsten Regulierungsperiode up-to-date zu bleiben und von topaktuellen Erfahrungsberichten zu profitieren!

9. Jahresforum Unbundling 2012
16. - 19. April 2012, Meliá Berlin

Informieren Sie sich jetzt über die attraktiven Frühbucherpreise, die noch bis zum 13. Januar 2012 gültig sind. Hier geht's zur Webseite und der Programmübersicht!

Mittwoch, 7. Dezember 2011

Large-Scale Hydrogen Underground Storage for Securing Future Energy Supplies

by Fritz Crotogino & Sabine Donadei, KBB UT, Hanover / Germany & Ulrich Bünger & Hubert Landinger, LBST, Ottobrunn / Germany

Introduction
In recent years the role of hydrogen in future energy scenarios has moved somewhat into the background. Now its significance is being highlighted even more as it may play an important role during and after the transition from fossil fuels to renewable energy sources concerning two areas in particular.

ENERGY INDUSTRYNERGY INDUSTRY
The energy industry is facing the need to store extremely large quantities of energy for long-term to seasonal periods in order to adapt the fluctuating and non-dispatchable energy production from wind and solar resources to the actual demand, which is no longer feasible using conventional technologies. In today’s fossil-based energy industry, seasonal fluctuations, strategic reserves, and compensation of shortages and shut-downs are largely balanced out by the storage of fossil fuels (e.g. Germany and France both have reserves covering around 2 months of demand). With a reach of only around 1 hour (Germany), today the storage of electrical energy plays a very subordinate role. The possibility to outsource the storage capacity to fossil fuels will decrease more and more in a future electricity-based energy industry, i.e. the long-term storage capacities for electrical energy will have to be much longer than 1 hour.

In recent years pumped hydro and compressed air energy storage (CAES) systems were almost exclusively seen as suitable methods for balancing out fluctuating wind and PV feed-in into the transmission grids. In contrast, the latest investigations - and particularly the comprehensive study published by VDE /1/ have identified the limitations of these storage technologies, particularly with respect to total storage capacities. Hydrogen alone can facilitate the storage of large quantities of energy to balance out long periods of poor wind power supply and seasonal fluctuations. Hydrogen large scale storage will be the only means in the long term to provide electrical energy in quantities and at a quality level consumers are accustomed to, in parallel to the downscaling of major capacities from fossil power plants and nuclear power stations. Furthermore, the relevant large volumes which need to be stored can most likely only be accommodated underground in geological formations – primarily in man-made salt caverns.

SUPPLYING FUEL CELL VEHICLES WITH HYDROGENUPPLYING FUEL CELL VEHICLES WITH HYDROGEN
The limited range and low storage capacity of battery electric vehicles as well as the limited availability of biofuels limiting its long term use to heavy duty transport such as trucks, rail and aircraft, require the use of hydrogen powered fuel cell vehicles for a wide range of vehicle segments. After a transition phase, hydrogen needs to be mainly produced from renewable electricity such as wind and solar power. Also for the transport sector it will be necessary to balance out seasonal fluctuations and to build up reserves to prepare for shortfalls, etc.

Most of today’s infrastructure investigations on future hydrogen supply have either addressed the development of hydrogen demand or the build-up of hydrogen refuelling stations including onsite hydrogen storage capacities as well as onboard hydrogen storage.

The full paper is available as a free download here. You will also find more interesting papers in english and in german language.

Dienstag, 6. Dezember 2011

Energiespeicher der Zukunft

In einem exklusiven Interview mit IQPC gibt Dr. Rudolf Zauner, Technology Manager Renewables bei dem Verbund Renewable Power GmbH, seine Prognose zu den verschiedenen Einsatzmöglichkeiten von Energiespeichern der Zukunft ab.

Er beantwortet unter anderem folgende Fragen:

Vor welchen Herausforderungen stehen die EVUs beim Einsatz von Großspeichern?

Wie kann die Wirtschaftlichkeit von Speichern ermittelt werden?

Welchen Beitrag können Speicher zur Energieversorgung der Zukunft leisten?

Lesen Sie mehr in dem Interview. Dies können Sie hier als kostenlosen Download herunterladen.